

Improving life for advanced liver cancer (HCC) patients
Fostrox – The first oral, liver-targeted treatment for advanced HCC

MEDIVIR

Continued progress

Right's issue enables rapid generation of randomized, comparative data to confirm benefit of fostrox combination with Lenvima

Design of planned phase 2 study strengthened by latest data in advanced HCC

Remetinostat out-license generates significant potential value upside for phase 3 ready molecule

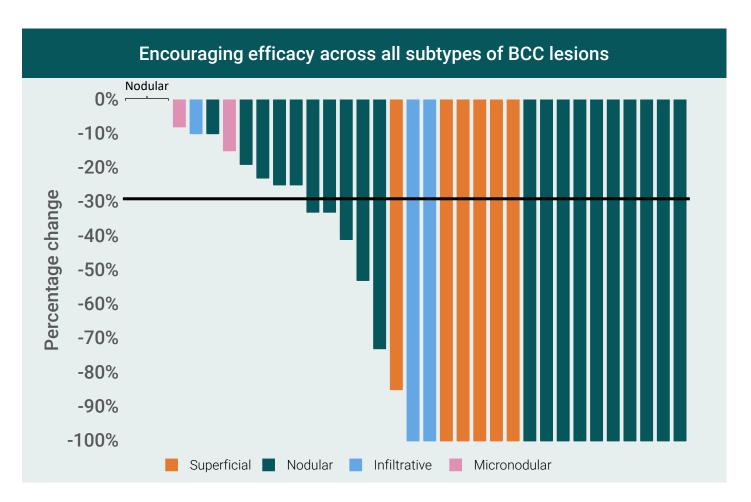
Medivir enters exclusive licensing agreement with Biossil, Inc. for remetinostat

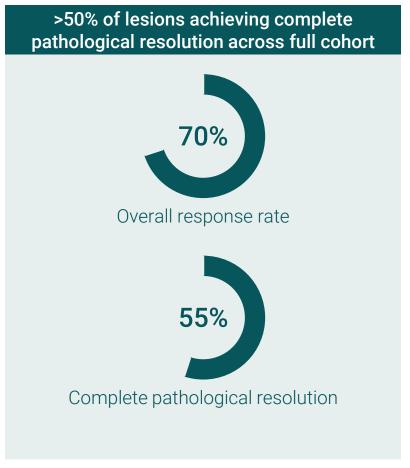
Medivir enters exclusive licensing agreement with Biossil, Inc. for remetinostat

2025-10-23

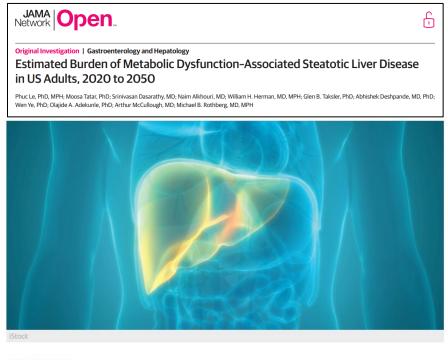
Stockholm, Sweden — Medivir AB (Nasdaq Stockholm: MVIR), a pharmaceutical company focused on developing innovative treatments for cancer in areas of high unmet medical need, announces today that it has entered into an exclusive licensing agreement, through which Biossil, Inc. will receive global, exclusive development rights for remetinostat, a clinical-stage topical HDAC inhibitor. Biossil is a Toronto-based Al-native drug developer focused on developing novel therapies for heterogenous diseases with urgent unmet medical needs.

Positive phase 2 data in basal cell carcinoma (BCC) and cutaneous T-cell lymphoma (CTCL)


Global, exclusive, licensing agreement to develop and commercialize remetinostat



Total, potential milestone payments of approximately USD 60 million Mid-single digit royalties on future net sales & sub-licensing revenue share.


Remetinostat is an effective topical treatment for reducing BCC disease burden in a clinically significant manner

Growth in Fatty Liver Disease expected to drive an alarming increase in liver cancer cases¹

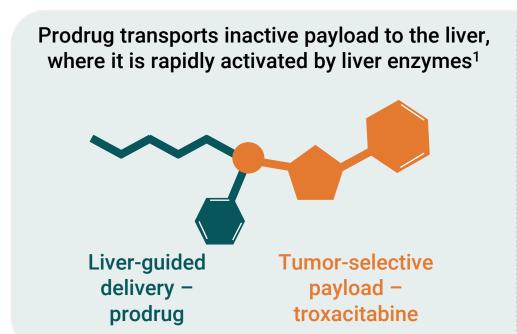
SCIENCE NEWS

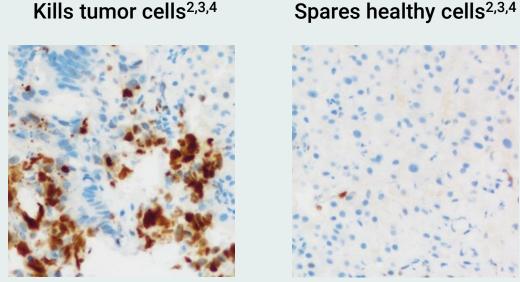
Fatty Liver Disease Is Expected to Skyrocket By 2050

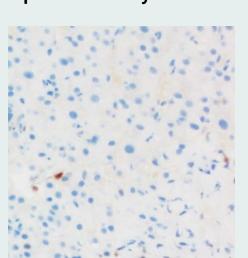
A model predicts the rise in MASLD and MASH will drive an alarming increase in liver failure, liver cancer and liver transplants.

Fatty Liver Disease (MASLD/MASH) expected to rise dramatically over the next 30 years

The number of newly diagnosed liver cancer patients each year is expected to double




HCC market growth further spurred by more and better treatments enabling patients to be treated longer



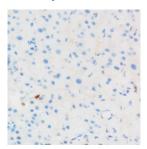
Fostrox – designed to selectively kill tumor cells in the liver

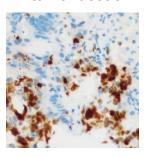
Slide 7

³Albertella, M. et al EASL Summit P01-05, 2018

Fostrox (fostroxacitabine bralpamide) The first oral, liver-targeted treatment tailored for HCC

Oral, liver-activated small molecule inducing DNA damage in tumor cells, sparing healthy liver cells³


Unique, liver-targeted approach in HCC


Liver-guided delivery prodrug

Tumor-selective pavload troxacitabine

No DNA damage in healthy liver tissue

DNA damage in tumor tissue

10.9 months time to progression, substantially better than SoC^{1,2} Fostrox + LEN (n =21)1 Median TTP, mo 10.9 0.4 Fostrox + studies* Lenvima *see slide 20 for details regarding individual study data

Absence of effective treatment options in 2nd line enables firstto-market opportunity for fostrox + Lenvima

- No 2nd line treatments approved in advanced HCC
- FLEX-HCC Phase 2 designed to rapidly confirm comparative benefit of fostrox in combination with Lenvima

Market opportunity in 2nd line HCC >\$2.5bn, with significant upside potential

>\$2.5bn

2nd line HCC market by 2030, fastest growing cause of cancer death in US⁴ Significant upside in liver metastasis from other solid tumors

¹Chon et al., ESMO, 2024, Poster 986

²Based on data from previous 2L phase 3 HCC studies with Stivarga, Cyramza & Cabometyx angline estigator initiated prospective & retrospective 2L studies with Lenvatinib

³Evans et al ASCO GI, 2021

⁴Ma et al., Cancer, June 15, 2019; 2089-2098

Medivir management team

CEO Jens Lindberg

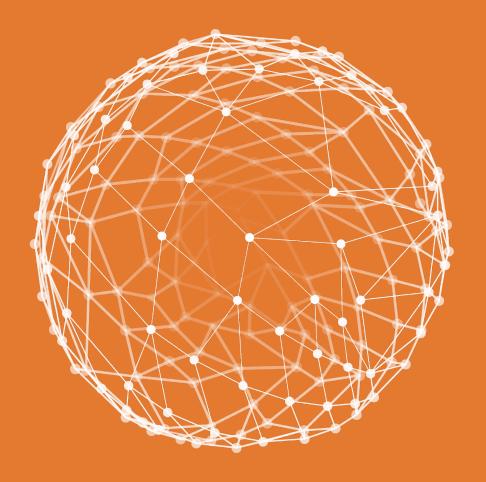
- > 25 years of experience from pharmaceutical industry with focus on late-stage development & commercialization in Oncology of drugs like Tagrisso, Lynparza, Imfinzi and Iressa
- Other experience includes interim CEO for Sedana Medical AB and Director Investor Relations at AstraZeneca.
- Member of the Board of Braincool AB.

CMO Dr. Pia Baumann

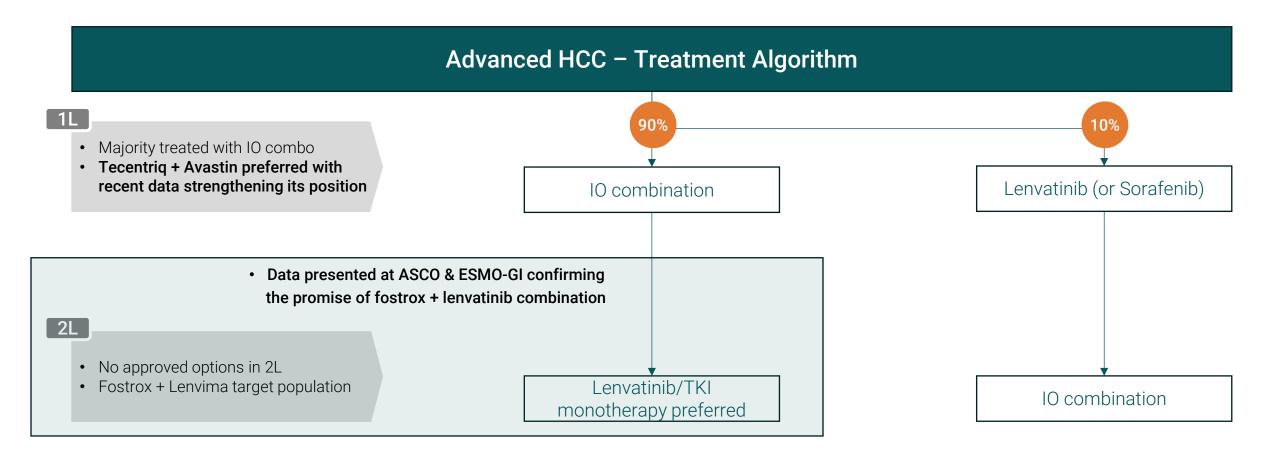
- MD PhD with a specialist degree in medical & radiation oncology at Karolinska Institute/University hospital.
- Substantial experience in drug development in the cancer field.
- > 25 years of clinical work at Karolinska and pharmaceutical/ biotech companies, including AstraZeneca, BMS, Takeda, Incyte and ARIAD

CFO Magnus Christensen

- > 25 years of experience in finance.
- Interim CEO at Medivir, May 2021-January 2022.
- Former CFO at O'Learys Trademark AB.
- Experience of working in listed-, private equity- and private companies.
- Member of the Board of PMD Device Solutions AB.

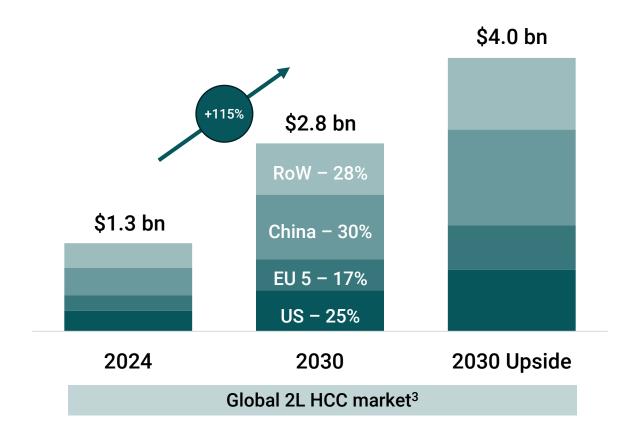


CSO Fredrik Öberg


- PhD in Medical Science & Adjunct professor at the Medical Faculty of Uppsala University.
- > 25 years of experience in cancer research.
- During the last 10 years focused on industrial drug discovery and development projects in oncology.
- He has published more than 50 scientific articles and holds several patents.

MEDIVIR

First-to-market opportunity in 2nd line HCC market valued >\$2.5bn



Fostrox + Lenvima targets 2L population where no treatments are approved today

2nd line HCC – a large and growing commercial opportunity with significant need for new treatment options³

Growth driven by:

- HCC to increase +122% in the US and +82% in China² by 2030, caused by fatty liver disease
- With improved 1L treatment, more patients will be fit enough for 2L, 50% → 70%
- New, approved treatment options increase average treatment duration to 7 months by 2030

2030 Upside:

 Average treatment duration increases to 10 months based on fostrox + Lenvima® study

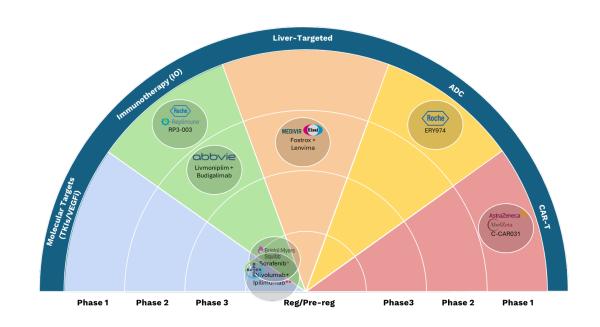
¹Rumguy et al. Journal of Hepatology 2022

²Huang et al., Nature Reviews, Gastroenterology & Hepatology, Vol 18, 2021

³GlobalData 2021 and internal analysis

Absence of effective treatment options in 2nd line HCC

Treatment algorithm – major need for new 2nd line options

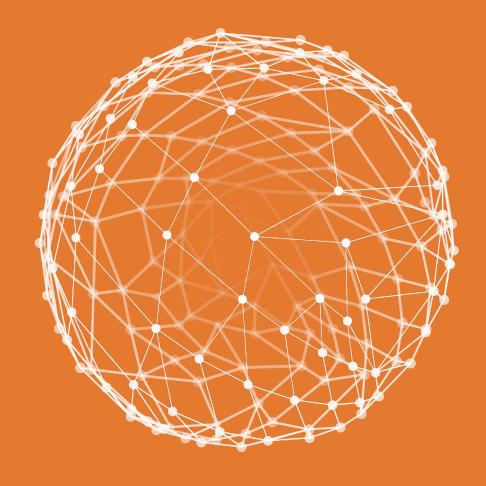

Competitive landscape in 2nd line HCC highlights lack of novel mechanisms in development with fostrox + Lenvima at the forefront

1st line treatment

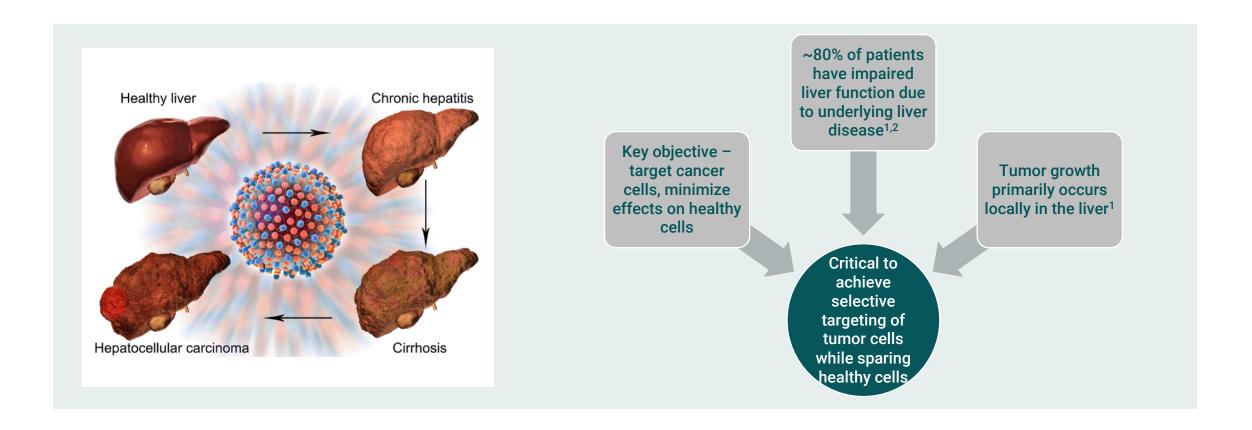
- IO combinations Standard of Care Tecentriq + Avastin
- Numerous studies ongoing evaluating various other IO combinations

2nd line treatment

- No approvals or scientific evidence to support treatment choice in 2nd line
- Few ongoing studies in 2nd line

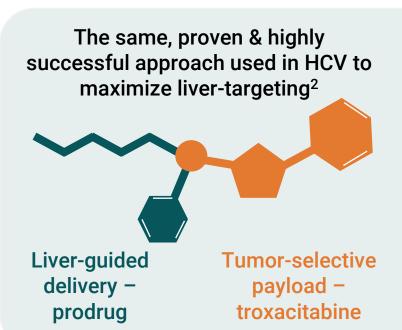

"We are becoming greedy, trying to have 8 different regimens in the 1L setting and none of us know what to do after.

If I had my way, the focus should really be on 2L treatment and beyond"


Rachna T Schroff, University of Arizona Cancer Center Late Breaking Abstract session at ESMO, September 2024


MEDIVIR

Fostrox – tailored for the specific needs of HCC

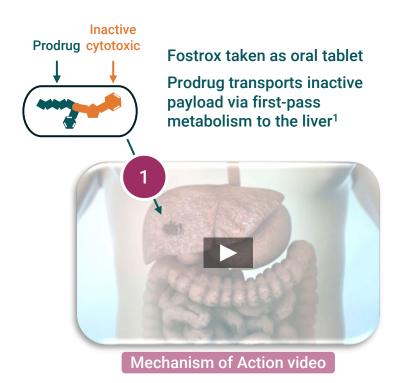

Targeted treatment approach critical in liver cancer (HCC)

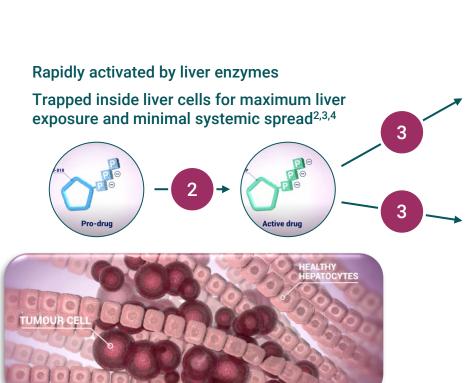
Fostrox – tailored for HCC to achieve targeted DNA damage in liver tumor cells with minimal impact on healthy liver cells

Combining prodrug & payload enables oral administration & targeted (>100-fold) liver exposure vs IV chemotherapy¹

Molecule stable in GI tract & in blood, rapidly activated by enzymes in the liver²

Payload selected as it causes DNA damage selectively in liver tumor cells, sparing healthy liver cells^{3,4,5}

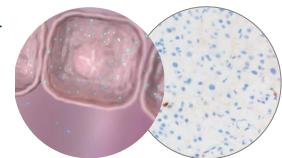

²Bethell, R. et al P-035, ILCA 2016



³Kukhanova, M et al J Biol Chem 1995 ⁴Albertella, M. et al EASL Summit P01-05, 2018

⁵Öberg F. et al, EASL PO-221, 2022

Fostrox MoA – tailored for HCC to achieve targeted DNA damage in liver tumor cells with minimal impact on healthy liver cells



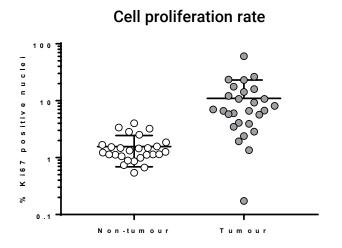
Cell death in tumor cells

Causes selective cell killing effect in tumor cells, sparing healthy liver cells as they very rarely divide^{2,3,4}

No impact on healthy cells

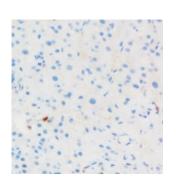
¹Bethell, R. et al P-035, ILCA 2016

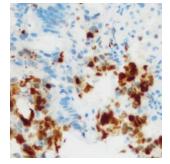
²Kukhanova, M et al J Biol Chem 1995 ³Albertella, M. et al EASL Summit P01-05, 2018


⁴Öberg F. et al, EASL PO-221, 2022

100-fold higher liver targeting vs IV administration & selective DNA damage in tumor cells enabling highly targeted mechanism

>100-fold higher liver targeting with fostrox than iv troxacitabine in rats


Compound	Route	Dose (µmol/k g)	AUC _{Liver} (nmol*h/ g)	AUC _{Plasma} (µmol*h/L)	AUC ratio (Liver/ Plasma)
Troxa- citabine	iv	80	<1.2	80	<0.016
Fostrox	oral	80	10	5.4	1.9


Liver tumor cells divide significantly more often than non-tumor cells¹

Slide 18

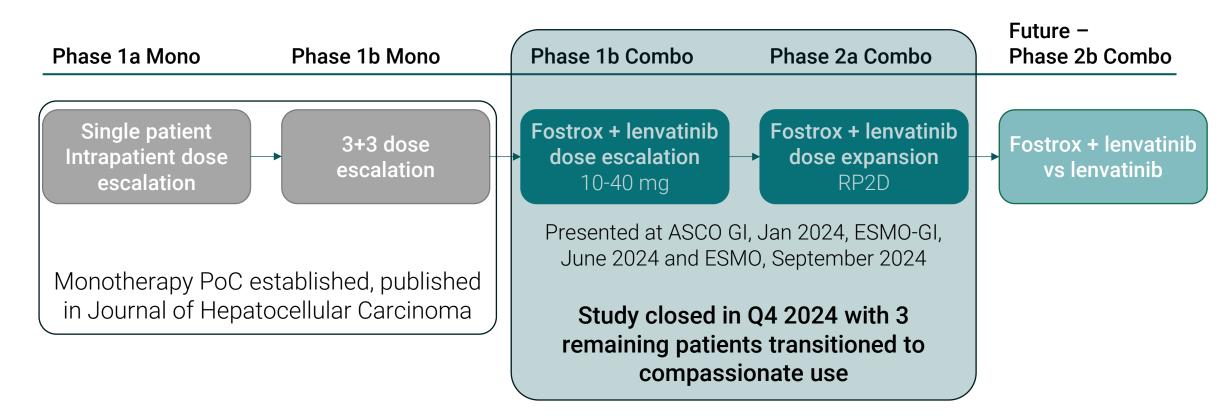
Fostrox induces DNA damage in tumor cells, sparing normal liver tissue²

Normal liver tissue*

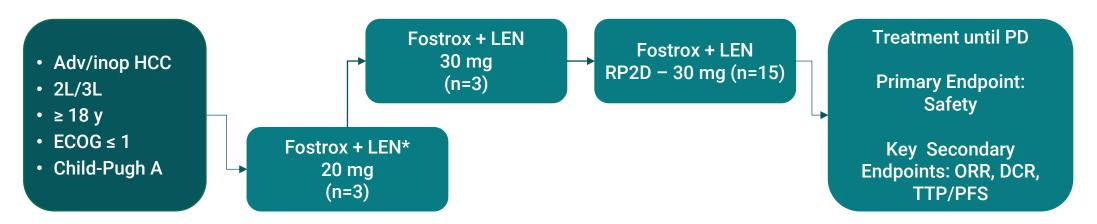
Tumor tissue*

Fostrox-induced DNA-damage indicated by pH2AX immunohistochemistry (IHC) staining of liver biopsy from phase 1b monotherapy

¹Albertella, M. et al EASL Summit P01-05, 2017

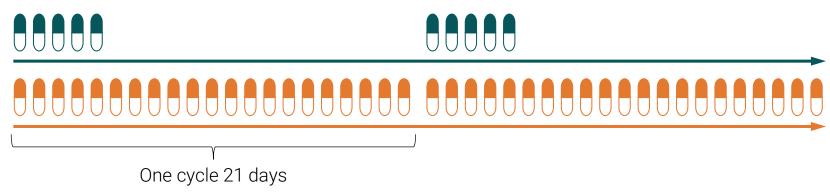

²Öberg F. et al, EASL PO-221, 2022

^{*}Induced DNA damage indicated by pH2AX IHC staining (brown color) in patient biopsies


Fostrox + Lenvima shows promise of improved outcomes in 2L HCC

Fostrox Clinical Development Program; monotherapy PoC established, focus on combination approach in 2L HCC

Fostrox + Lenvima phase 1b/2a study design

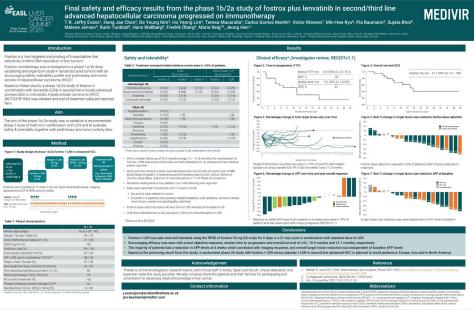


Patients were enrolled at 15 sites in the UK, Spain and South Korea. Imaging assessments (CT & MRI) every 6 weeks.

Fostrox: Oral OD 5 days in 21 days cycles

LEN: Oral QD continuous

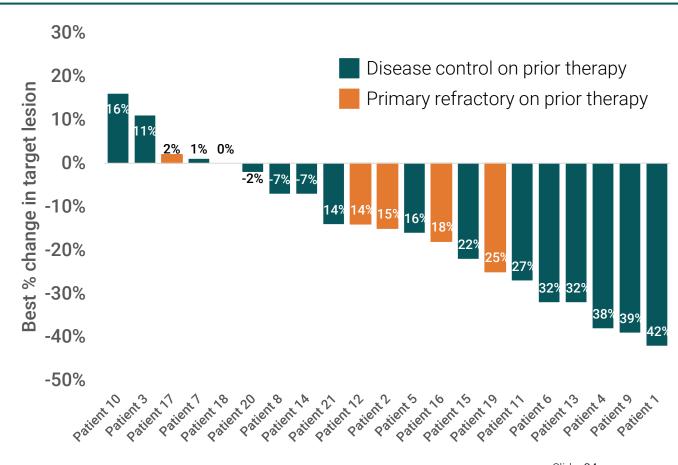
(8 or 12 mg)



Global phase 1b/2a study with fostrox + Lenvima (TKI) positive, final data presented at EASL in February

Poster P02-13 presented by Dr. Jeff Evans, Glasgow, at EASL Liver Cancer Summit in February in Paris

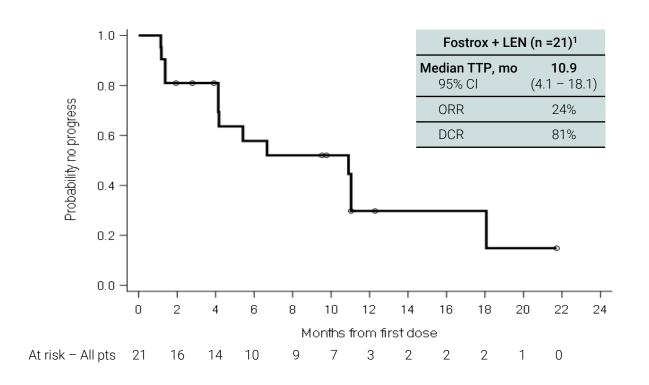
Patient characteristics reflecting generous inclusion criteria


Patient characteristics ¹	N = 21		
Mean age (range)	62 yrs (42 - 82)		
Gender, Female / Male (%)	24 / 76		
ECOG Performance status 0/1 (%)	71 / 29		
Child-Pugh A (%)	100		
Viral/Non-viral (%)	76* / 24		
Extra hepatic lesion(s) Y/N (%)	67 / 33		
AFP ≥400 ng/mL at baseline Y/N (%)**	45 / 55		
Region, Asia / Europ (%)	67 / 33		
Prior treatment lines; 2nd line/3rd line (%)	81 /19		
Prior atezolizumab/bevacizumab in 1L (%)	86		
Prior local therapy (TACE, RFA etc)	70		
PD on prior treatment (%)	100		
Primary refractory on prior therapy (%)***	24		
Starting dose fostrox, 20mg / 30mg (%)	14 / 86		

^{*}HepB-81% and HepC-19%; **AFP- NA for 1 pt; ***Active treatment ≤ 12 weeks. Data NA for 3 patients Slide 23

More than 75% of patients experiencing tumor shrinkage¹

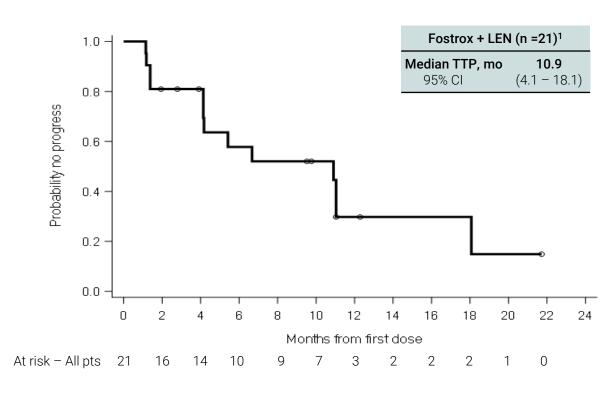
Best percentage change in target lesion size related to treatment response in first line



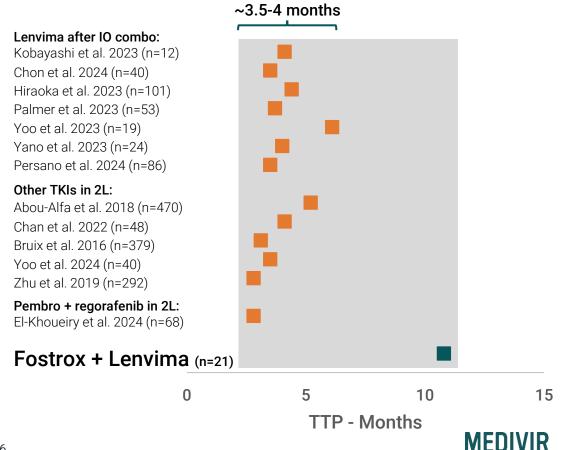
- Median duration of response 7.0 months
- Longest duration of response still ongoing at 19.5 months
- Patients benefitted from treatment independent of outcome in previous line of therapy

Median TTP 10.9 months, indicating substantially improved efficacy compared with Lenvima alone¹

Median time to progression (TTP) with fostrox + LEN - investigator review, RECISTv1.1

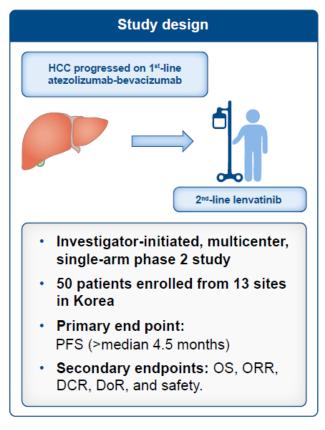


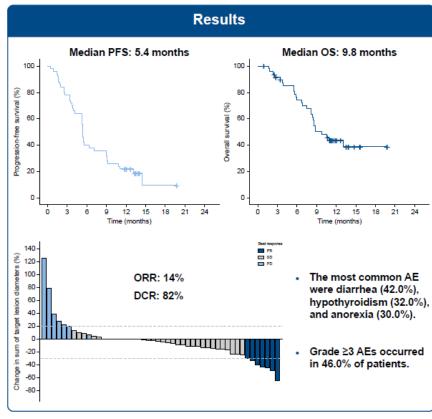
- Median time to progression 10.9 months
- Median follow-up of 10.5 months
- Longst running patient still on treatment after three years (Aug 2025)



Median time to progression (TTP) 10.9 months, remarkably longer than Lenvima monotherapy and other 2L HCC treatments

Median TTP (Kaplan-Meier) with fostrox + Lenvima




Median TTP/PFS vs previous studies in 2L HCC

Korean Cancer Study Group prospective study data with Lenvima post Tecentriq + Avastin, aligns with other 2nd line outcome data

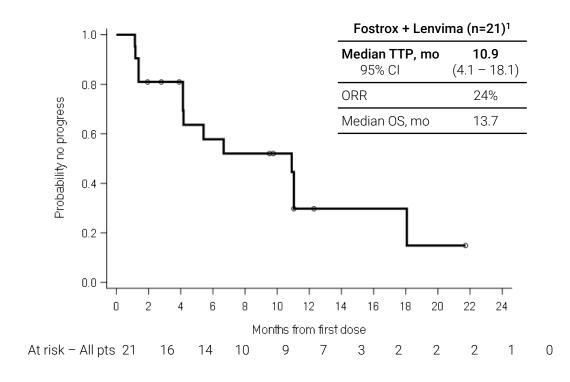
Second-line lenvatinib after atezolizumab-bevacizumab in advanced HCC

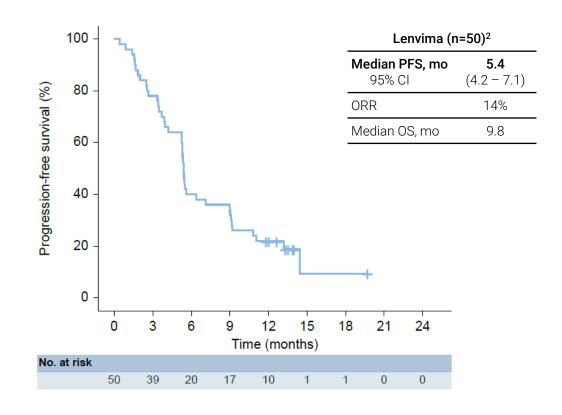
Conclusion

- Lenvatinib demonstrated promising efficacy and a manageable safety profile as a second-line treatment for patients with HCC progressing on atezolizumab-bevacizumab.
- These findings offer prospective evidence supporting lenvatinib as a viable treatment option in the post-atezolizumab-bevacizumab context.

Similar patient characteristics across the Lenvima monotherapy study and the Phase 1b/2a fostrox + Lenvima study

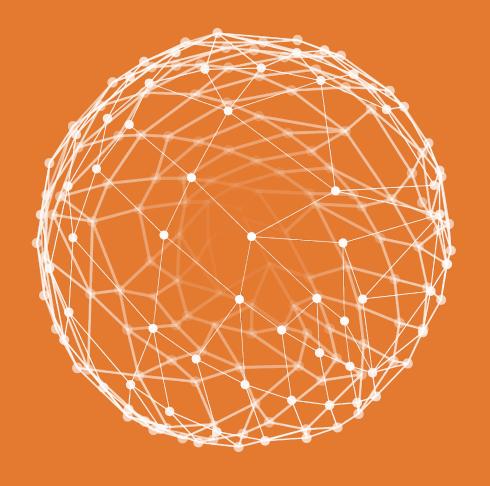
Patient characteristics	N = 50 Lenvima monotherapy 13 sites in Korea ¹	N = 21 Fostrox + Lenvima 15 sites in Korea, UK & Spain²	
Mean age (range)	66 (32-86)	62 yrs (42 - 82)	
Gender, Female / Male (%)	18 / 82	24 / 76	
Child-Pugh A (%)	100	100	
BCLC stage A/B or C (%)	12 / 88	0 / 100	
Viral/Non-viral (%)	72 / 28	76* / 24	
AFP ≥400 ng/mL at baseline Y/N (%)**	44 / 56	48 / 52	
Region, Asia / Europe (%)	100 / 0	67 / 33	
Prior treatment lines; 2 nd line/3 rd line (%)	100 / 0	81 /19	
Prior atezolizumab/bevacizumab in 1st line (%)	100	86	
Prior TACE therapy (%)	58	70	


^{*}HepB-81% and HepC-19%; **AFP- NA for 1 pt

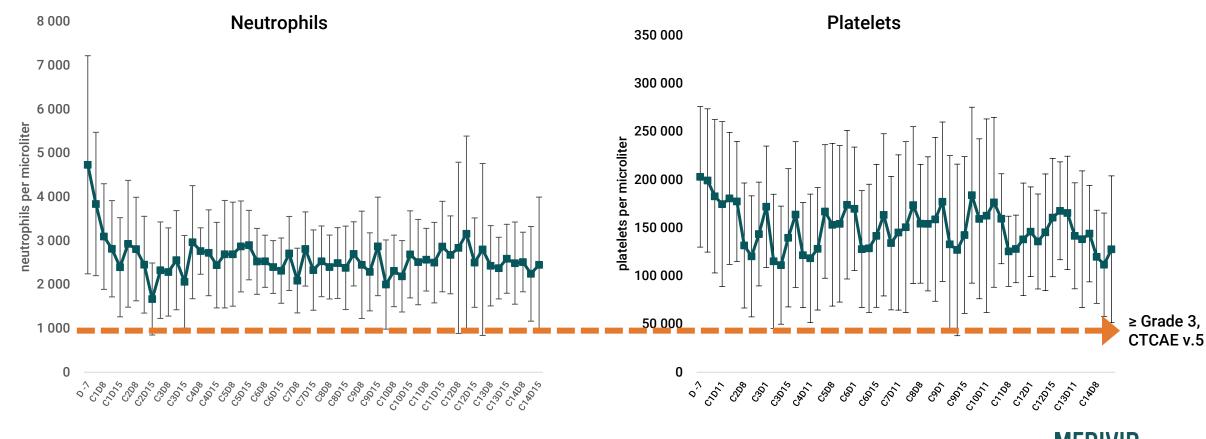

¹Kim et al., Journal of Hepatology, Sept 04 2025 ²Chon et al., ESMO 2024, Poster 986

Fostrox + Lenvima phase 1b/2a data showed substantially better outcome data compared to the Lenvima montherapy study

Median TTP - Fostrox + Lenvima¹



Median PFS – Lenvima monotherapy²



Fostrox + Lenvima shows encouraging tolerability enabling patients to remain on treatment long-term

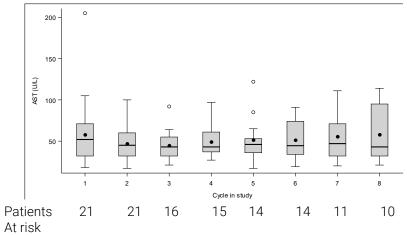
Absolute neutrophile and platelet counts were stable over the course of treatment, enabling long-term use¹

Longitudinal neutrophil & platelet counts, at all time points measured over first 10 months of treatment

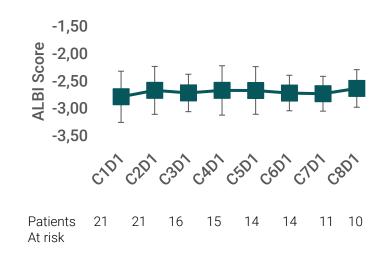
Liver targeting properties supports encouraging tolerability profile, enabling patients to remain on treatment long-term

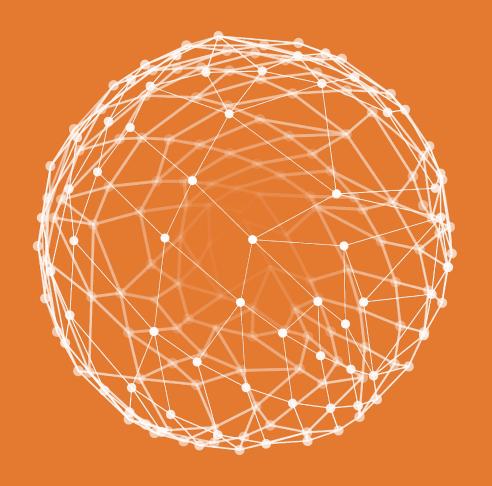
Adverse Events*	Treatment emergent AEs any grade No of pts (%)	Treatment emergent AEs Grade ≥ 3 No of pts (%)	Fostrox Treatment- related Grade ≥ 3 No of pts (%)	LEN Treatment- related Grade ≥ 3 No of pts (%)
Any AE	21 (100)	17 (81)	11 (52)	14 (67)
Hematologic AE				
Thrombocytopenia	13 (62)	6 (29)	5 (24)	6 (29)
Neutropenia (no febrile)	10 (48)	8 (38)	8 (38)	6 (29)
Anaemia	7 (33)	3 (14)	3 (14)	3 (14)
Leukocyte decrease	5 (24)	1 (5)	1 (5)	1 (5)
Other AE				
Hypothyroidism	12 (57)			
Diarrhoea	10 (48)	1 (5)		1 (5)
Hand-foot syndrome	10 (48)	1 (5)		1 (5)
Fatigue	9 (43)			
Asthenia	8 (38)	3 (14)	1 (5)	2 (10)
Decreased appetite	8 (38)			
Proteinuria	7 (33)	1 (5)		1 (5)
Hypertension	6 (29)	2 (10)		2 (10)
Cough	5 (24)			
Pruritus	5 (24)			

- No unexpected adverse events
- Hematological AEs were transient and manageable in nature
- Grade ≥ 3 events in 11 patients (52%) with only 7 events resulting in dose delay or discontinuation
- No patients with febrile neutropenia or low platelet count with bleeding
- No fostrox related deaths or SAEs



Stable liver function during treatment with fostrox + Lenvima – no deterioration in liver enzymes or change in ALBI score

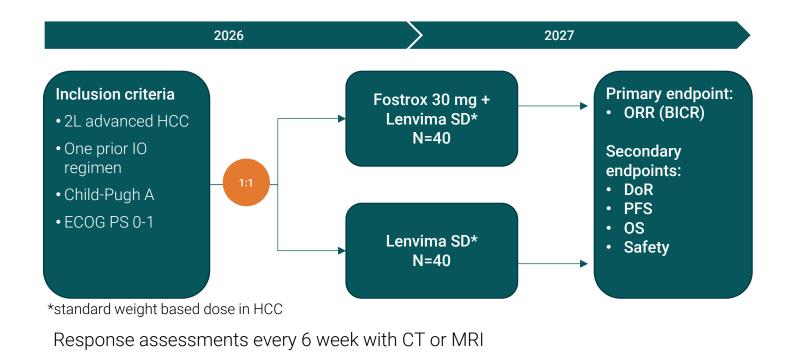

ALT change over duration of treatment


AST change over duration of treatment

ALBI score change over duration of treatment

FLEX-HXX: Phase 2 study enables rapid generation of randomized, comparative data to confirm benefit of fostrox combination with Lenvima in 2nd line HCC

FLEX-HCC Fostrox + Lenvatinib Combination for Advanced HCC


Primary Investigator

Dr. Hong Jae Chon

CHA Bundang Hospital, Seoul, Korea

FLEX-HCC: Randomized, comparative phase 2 study to confirm benefit for fostrox + Lenvima combination in 2nd line HCC

Study design:

- 80 pts randomized: Fostrox + Lenvima vs Lenvima
- 8 sites in Korean Cancer Study Group
- Enrolment: 12 months
- Primary endpoint FU: 3-6 months
- Efficacy evaluated by Blinded Independent Central Review (BICR)

Key benefits:

- Generates robust comparative efficacy and safety data in collaboration with established research consortium
- Enables rapid data read out
- Strengthens design of registrational study

Key patent approval in Japan for fostrox + Lenvima extending protection until 2041, complementing previous approval in EU

Medivir receives Notice of Allowance for fostrox plus lenvatinib combination patent by Japan Patent Office

2025-07-08

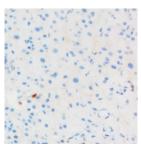
Medivir AB (Nasdaq Stockholm: MVIR), a pharmaceutical company focused on developing innovative treatments for cancer in areas of high unmet medical need, announces today thar it has received a Notice of Allowance by the Japan Patent Office (JPO) for the company's patent application covering claims for the combination of fostroxacitabine bralpamide (fostrox) with lenvatinib (Lenvima) for the treatment of hepatocellular carcinoma (HCC) and cancer metastases to the liver.

Covers the combination of fostrox + Lenvima for the treatment of HCC and metastases to the liver

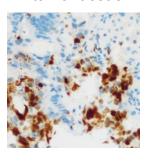
Now approved in Japan, EU and Australia which indicates likelihood of other key regions to follow

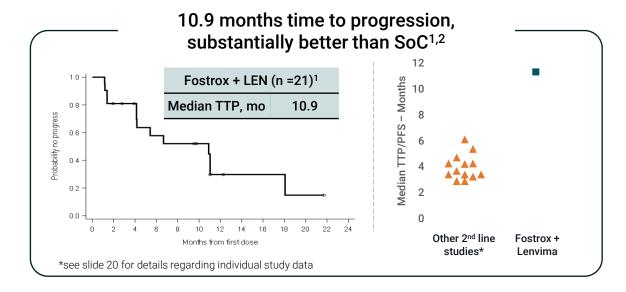
Generates critical extension of patent protection until 2041

Fostrox (fostroxacitabine bralpamide) The first oral, liver-targeted treatment tailored for HCC


Oral, liver-activated small molecule inducing DNA damage in tumor cells, sparing healthy liver cells³

Unique, liver-targeted approach in HCC




Liver-guided **Tumor-selective** delivery pavload prodrug troxacitabine

No DNA damage in healthy liver tissue

DNA damage in tumor tissue

Absence of effective treatment options in 2nd line enables firstto-market opportunity for fostrox + Lenvima

- No 2nd line treatments approved in advanced HCC
- FLEX-HCC Phase 2 designed to rapidly confirm comparative benefit of fostrox in combination with Lenvima

Market opportunity in 2nd line HCC >\$2.5bn, with significant upside potential

>\$2.5bn

2nd line HCC market by 2030, fastest growing cause of cancer death in US⁴ Significant upside in liver metastasis from other solid tumors

¹Chon et al., ESMO, 2024, Poster 986

²Based on data from previous 2L phase 3 HCC studies with Stivarga, Cyramza & Cabometyx angline estigator initiated prospective & retrospective 2L studies with Lenvatinib ³Evans et al ASCO GI, 2021

⁴Ma et al., Cancer, June 15, 2019; 2089-2098

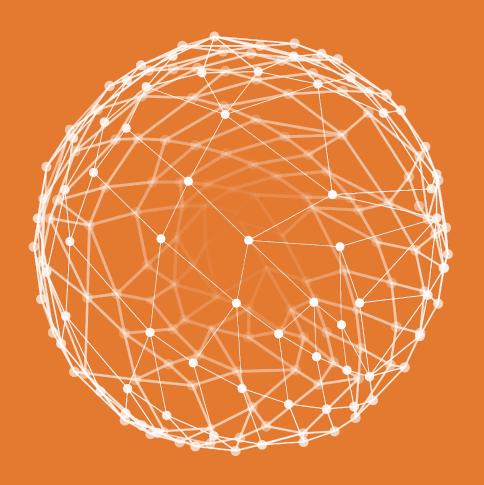
Board with extensive drug development experience

Chairman of the Board Dr. Uli Hacksell

- Member since 2018, Chairman since 2021
- Over 30 years pharma & biotech experience, including 10 years' experience as CEO of publicly owned companies.

Board member Dr. Angelica Loskog

- Ph D, Clin. Immunology
- CEO Lokon Pharma & scientific advisor at venture cap Nexttobe
- More than 25 year's academic drug development experience within immune oncology



Board member Dr. Anna Törner

- Ph D Statistics, MScs Pharmacy
- Broad experience from drug development, especially regulatory affairs
- Founder consulting company SDS Life Science within drug development and statistics.

Thank You!

