Discovery of potent small molecule inhibitors of RSV Fusion protein

Karolina Ersmark1, Christina Rydergård1, Helen Kylefjord1, Erwin Brenndörfer1, Susana Ayesa Alvarez1, Stina Lundgren1, Fernando Sehgelmeble1, Horst Wähling2, Lourdes Salvador Oden1, Mikael Pelcman1, Karin Leijondahl1, Dean Derbyshire2, Jonna Stålring1, Neera Borkakoti3, Michael Battles2, Jason McLellan2, Sara Moses1, Tom J. Goldschmidt1, Johan Bylund1, Richard Bethell1, Paul Targett-Adams1. 1Medivir AB, Huddinge, Sweden 141 22. 2Geisel School of Medicine, Dartmouth College, Hanover, NH 03755-3844

Background

Respiratory syncytial virus (RSV) infections in infant, elderly, and immunocompromised patients represent substantial unmet medical need.1,2 Tractable options for the development of anti-RSV therapies include inhibition of RSV-encoded fusion (F) protein.3 We report the discovery of orally bioavailable RSV F inhibitors exhibiting highly potent and balanced activities against diverse RSV isolates, large cytotoxicity indices, and promising in vivo pharmacokinetics. The profile of a front-running candidate from this program (‘Lead 9’) is presented below.

Program development

Lead optimization was instigated on three novel 6,6-bicyclic cores (series 1-3) with the aim of selecting a candidate drug capable of sustaining therapeutic drug exposures against a broad range of RSV infections in humans. Inhibitors synthesized early in the lead optimization campaign achieved potencies <10 nM against a primary RSV A screening strain (RSV A2) but were often associated with lower activities against additional RSV strains and non-optimal ADMET profiles. Subsequent optimizations resulted in several promising molecules from series 3 with picomolar EC50 values against both RSV A and B subtypes, cytotoxicity indices >50,000, favorable ADMET properties, and encouraging in vivo PK profiles in rat and dog. Lead 9 was identified as one of several special interest molecules from series 3 and was profiled extensively.

Methods

Established virology, molecular/structural biology, and drug metabolism/pharmacokinetic assays were used to screen and profile F inhibitors generated from the internal chemistry program.

Results

Mechanism of action for series 1-3 molecules

Time-of-addition studies and the generation of specific resistance-associated substitutions in the F protein using series 1-3 examples indicated the mechanism of action for these molecules was mediated by targeting the RSV F protein. Co-crystallization of series 1-3 examples with pref revealed compounds bound in a pocket of pref created at the intersection of the 3 monomeric subunits:

• Medivir example compounds from all 3 series bind in the same pocket with the same stoichiometry: 1 inhibitor per pref trimer
• Binding pocket contains residues involved in conferring resistance to fusion inhibitors e.g. L141 and D489.
• The inhibitors are likely ‘triggering antagonists’: they tether and stabilize 2 structurally labile regions of F (heptad repeat B and fusion peptide) to prevent release of the fusion peptide during the conformational change required to initiate the membrane fusion process.

Co-crystal structure of a series 1 inhibitor (yellow) bound to pref trimer. L141 and D489 residues are highlighted in pink.

In vitro safety assessments for Lead 9 revealed benign safety profiles

<table>
<thead>
<tr>
<th>Assay</th>
<th>Description</th>
<th>Result Lead 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxicity evaluations</td>
<td>Hep3B/HUV17/MT4 cell lines</td>
<td>CC50 >50µM</td>
</tr>
<tr>
<td>High content multi-parameter</td>
<td>HepG2 and rat primary hepatocytes</td>
<td>No significant effects on any parameter tested (top concentration 200 µM)</td>
</tr>
<tr>
<td>toxicity assessment (Cell/cpH4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary pharmacology target screen (87 targets)</td>
<td>In vitro binding to GPCR, ion channels, transporters, nuclear receptors, kinases and other non-kinase enzymes.</td>
<td>No hits (tested at 10 µM)</td>
</tr>
</tbody>
</table>

Conclusions

• A lead optimization campaign directed upon three novel 6,6-bicyclic cores (series 1-3) resulted in the identification of Lead 9, which demonstrated:
 ✓ Biology data consistent with inhibition of RSV Fusion protein.
 ✓ Balanced picomolar EC50 against a broad range of RSV A and B isolates.
 ✓ Favourable human in vitro DMPK properties.
 ✓ Excellent oral bioavailability in rat and dog.
 ✓ A robust antiviral effect in the cotton rat model for human RSV infection.
 ✓ A benign in vitro safety profile.

• The profile of Lead 9 supports progression to preclinical development with the aim of developing a safe and effective treatment against RSV infections in humans.

References