

Suppression of Regulatory T cells (T_{regs}) in vivo by Small Molecule Targeting of the Mucosa-Associated Lymphoid **Tissue Lymphoma Translocation Protein 1 (MALT1)**

BACKGROUND

- Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a protease and scaffold protein that mediates NF-kappaB signaling downstream of the T cell receptors (TCR)
- MALT1 is a molecular target in hematologic malignancies with constitutively active MALT1signaling and Th₁₇-driven autoimmune disease indications. Pharmacologic inhibition of MALT1 has shown efficacy in preclinical models of autoimmune disease¹
- Genetic evidence from MALT1-deficient mice MALT1 promotes the that suggest development of immune suppressive natural regulatory T cells (nT_{regs})²
- Mice with protease-dead MALT1 (MALT1-PD mice) develop autoimmunity and are less svngeneic amenable tumor transplantation³⁻⁷
- pharmacologic hypothesize that • We inhibition of MALT1 will enable selective suppression of tumor-associated T_{regs} and stimulate anti-tumor immunity⁸

SCIENTIFIC RATIONALE

Suppression of regulatory T-cells (T_{regs}) to enhance anti-tumor immune response

- Immune system plays a key role in tumor development
- T_{reg} cells inhibit several types of immune cells and thereby suppress the anti-tumor immune response
- Tumor cells recruit and induce development of T_{reg} cells
- Selective suppression of T_{reg} cells, without negatively affecting T_{eff} and other immune cells, is predicted to enhance the anti-tumor immune response in cancer patients and possibly potentiate other immunotherapies

METHODS

-house produced MALT1 was assayed in using Ac-Leu-Arg-Ser-Arg-AMC as substrate

Western blot. Whole-cell lysates were run with Protein Simple (Peggy Sue, size separation mode) using Size Master kit. A mix of anti-HOIL1 (#sc-393754, Santa Cruz), , anti-plκBα (#4814), pJNK (#4668) and anti-COX IV (#4850, all from Cell Signaling) was used.

IL-2 expression. IL-2 protein in medium of PMA/IO activated Jurkat cells was measured after 40 hours using Meso Scale human IL-6 tissue culture kit (MSD) Trease differentiation assay. To assess the impact of MALT1 inhibition on Trease differentiation, CD4+ naïve T cells (CD4+CD45RA+CD127+CD25-) were flow sorted from healthy donor PBMCs and stimulated in IL-2 and TGF-beta containing medium with anti-CD3/CD28 for 5 days, rested for 5 days without stimulation, and analyzed for FoxP3 and CD25 expression

IL-2 in vivo: The capacity to inhibit TCR-signalling was assessed by quantification of serum IL-2 following a single IV bolus of the anti-CD3 agonist antibody 145-2C11. Effect on Tregs in vivo: The pharmacodynamic effects on FoxP3+ Tregs in the tumor, tumor-draining lymph nodes (TDLN) and distal lymph nodes (LN) were evaluated in the MB49 syngeneic mouse bladder cancer model.

Henderson¹, Hans-Georg Beisel¹, Karolina Ersmark¹, Sofia Karlström¹, Richard Bethell¹, <u>Mark Albertella¹</u>

¹Medivir AB, Huddinge, Sweden. ²Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Sweden

CHARACTERIZATION AND PK PROFILE

		Compound A ⁹
PhysChem properties	Mw	448
	Solubility (Kin. @pH 7.4)	1
$ \begin{array}{c} $	MALT1 Human/Mouse Ki (nM)	11/5
	Jurkat HOIL1/IL-2 IC ₅₀ (nM)	14/12
	CC50 A549/CEM/MOLT-4/RAJI (µM)	>100/>50/20/>50
In vitro properties	Selectivity Thrombin/Trypsin/Cat S	>40-fold
	HLM/MLM (μl/min/mg)	7/10
	Caco-2 Papp (10 ⁻⁶ cm/s)	20
	fu plasma Human/Mouse (%)	1.1/2.6
<i>In vivo</i> properties	F Mouse (%)	93
	CL Mouse (mL/min/kg)	2
	Vss Mouse (L/kg)	0.9

Compound A inhibits proteolytic cleavage of MALT1 substrates and IL-2 secretion by Jurkat and PBMCs in vitro. (A) Dosedependent inhibition of HOIL1 cleavage in PMA/ionomycin treated Jurkat cells. Simple Western for full-length HOIL1 (HOIL1 FL) and cleaved HOIL1 (HOIL1 Cter) in lysates from Jurkat cells following activation with PMA/ionomycin 1hr after exposures to compound A. COX IV was used as a loading control. (B) Quantitation of Simple Western data and determination of an EC50. (C) Inhibition of IL-2 secretion by Jurkat cells stimulated by PMA/Ionomycin for 24h (D) Inhibition of IL-2 in PBMCs from healthy donors stimulated with anti-CD3/CD28 beads for 24h in vitro. (E) CD4+ cells purified from buffy coat. Cells were treated with either 0,1 % DMSO or 3 μ M compound A for half an hour, and thereafter the cells were stimulated with PMA/ionomycin for the indicated time and then washed and lysed. Lysates were analysed using Simple Western. (anti-HOIL1 antibody from Santa Cruz, #sc-393754, anti-COX IV antibody from Cell Signaling Technologies #4850).

Niklas Finnberg¹, Fredrik Öberg¹, Sara Mangsbo², Iliana Kerzeli², Erika Fletcher², Anders Kallin¹, Agni Christodoulidou¹, Anna-Karin Sternbeck¹, Johan Bylund¹, Sara Moses¹, Lourdes Salvador Oden¹, Mari Kullman-Magnusson¹, Ian

IN VITRO SUPPRESSION OF T_{REG} DEVELOPMENT IL-2 (100 U/ml) TGFβ (1ng/ml) TGF β (1ng/ml) 0⁰ 10¹ 10² 10³ nt of the impact of Compound A on differentiation *in vitro*. (A) Schematic of the differentiation protocol. (B) scatter-plot for one donor. (C) Vehicle 0.04 µM 0.4 µM 4 µM Compound A is a potent inhibitor of TGF-T_{eff} to T_{reg} ratio 1:2 beta/IL2-dependent *in vitro* T_{reg} differentiation following CD3/CD28 bead stimulation. (D) Suppression of CD3/CD28 stimulated T_{eff} cells (CD4+/CD25-) by *in vitro* differentiated T_{reg} cells was assessed after 4 days. (E) and (F) No general inhibitor effect on CD4+ T cell proliferation and viability was observed. Statistical assessment by Vehicle 0.04µM 0.4µM 4.0µM Vehicle 0.04µM 0.4µM 4.0µM Students *t* test. Mean percentage +/-SD Compound A *IN VIVO* SUPPRESSION OF IL-2 αCD3 injectio Cmpd admin. MALT1 (Series 2) – 🔶 – Free Plasma PK αCD3 injection HOIL1 IC₅₀ 145-2C11, (10 µg mAb/mouse IV) Blood sampling for exposure (PK) and IL-2 analysis ------Baseline blood sampling Cmpd admin. aCD3 injection (-1 hr) Anti-CD3 exposure period 20 24 12 Time (h) Serum IL-2 (aCD3) PK (mouse) Fu_(mouse)= 2.6% 4000 2000 K_{i(mouse)} 5 nM

Compound A blocks serum IL-2 release *in vivo* following anti-CD3 challenge. Administration of 30 µmol/kg PO of compound A to mice was well-tolerated and gave an average 24 hr free plasma exposure twenty-one times greater than the mouse K_i (data not shown). (A) PK profile of compound A showing total and free plasma concentration relative to cellular IC₅₀ for HOIL1 cleavage. Similar exposure was observed after 10 day repeat dosing (not shown). (B) Schematic of in vivo experiment. (C) Mouse serum IL-2 levels 1.5 and 4 hrs after anti-CD3 treatment in the presence and absence (vehicle) of compound A. Average of N=3 is shown +/-SEM. (D) Free plasma concentration of 'A' in mouse plasma at 1.5 and 4 hrs following anti-CD3 in relation to K_i . Median of an N=3/time point is shown. Fu indicates fraction unbound (%) drug

IN VIVO SUPPRESSION OF T_{REG}

Compound A reduces T_{reg} numbers in Tumor, Tumor-draining lymph nodes (TDLN), and distal Lymph Nodes (LN) in tumor-bearing mice. MB49 bladder cancer (3x10⁵ cells) was inoculated on the right flank of C57/BL6 mice on day 1. Compound A (30 μmol/kg) was administered p.o. on day 8, 9, 10, 11. On day 12 the percentage of FOXP3+, CD4+ and CD8+ T-cells was analyzed in Tumor, TDLN, and LN.

CONCLUSIONS

- MALT1 inhibition by Compound A causes selective inhibition of human CD25+/FoxP3+ T_{reg} differentiation in vitro without inhibition of activation-induced proliferation of other T cell populations or apparent cytotoxicity
- In vivo inhibition of MALT1 causes a selective reduction of T_{regs} in Tumour-draining lymph node
- This novel small molecule approach to T_{reg}-targeting may improve the response to immune therapy for multiple cancer indications without additive/synergistic toxicities
- Investigations of in vivo anti-tumour effects of MALT1 inhibition are ongoing
- A chemistry program is in progress with the aim to select a final molecule for clinical development

REFERENCES

- 1. Demeyer A et al Trends Mol Med 2015
- 2. Brustle A et al Cell Death Differ 2015
- 3. Bornancin F et al J. Immunol 2015
- 4. Gewies A et al 2014 Cell Rep 5. Yu JW et al PLOS ONE 2015

- 6. Jaworski M et al EMBO J 2014
- 7. Baens M et al Eur J Immunol 2018
- 8. Albertella, M., Öberg, F. 2018 WO 2018/141749
- 9. Pissot-Sodermann, C. et al. 2015 WO 2015/181747 10. Fletcher, E. A. K. et al. J Immunol 2018. 201 (1): 87-97.

EORTC-NCI-AACR Symposium 2018, Dublin