

P02-04: Liver targeting and anti-tumour efficacy of the nucleotide prodrug MIV-818 in nonclinical models of hepatocellular carcinoma

Biljana Rizoska¹, Johan Bylund¹, Karin Tunblad¹, Rodrigo Palma Villar¹, Alastair Kyle², Andrew Minchinton², <u>Richard</u> Bethell¹, Karin Göhlin¹ and Mark Albertella¹ ¹Medivir AB, Huddinge, Sweden; ²BC Cancer Research Center, Vancouver, BC, Canada

INTRODUCTION

- Troxacitabine (TRX) is a chain terminating nucleoside analogue with preclinical anticancer activity against hepatocellular carcinoma (HCC). Clinical development of TRX (given IV) was halted due to systemic toxicity.
- MIV-818, a nucleotide prodrug of troxacitabine monophosphate (TRX-MP), has been designed to direct high levels of the chain-terminating nucleotide troxacitabine triphosphate (TRX-TP) to the liver after oral dosing through first-pass uptake, while minimizing systemic exposure
- In the liver, the membrane permeable prodrug undergoes fast conversion into the poorly permeable alanine metabolite (AM), which is then converted to the active TRX-TP metabolite via a series of charged and poorly permeable metabolites:

- MIV-818 is rapidly hydrolysed to the AM in rodent blood (CL_{int} >150µL/min/mg) due to its high levels of esterase activity. This limits the utility of mouse and rat models. MIV-818 is stable in human and non-rodent blood (CL_{int} <2µL/min/mg)
- Liver targeting of MIV-818 was investigated in rats after oral dosing and anti-tumour efficacy was evaluated in vivo in HCC mouse xenograft models

METHODS

In vivo rat PK

MIV-818 (80 μmol/kg, PO) and TRX (80 μmol/kg, PO and IV) were administered to male Wistar rats and plasma and liver were collected at different time points after dosing (up to 24 h) for bioanalysis.

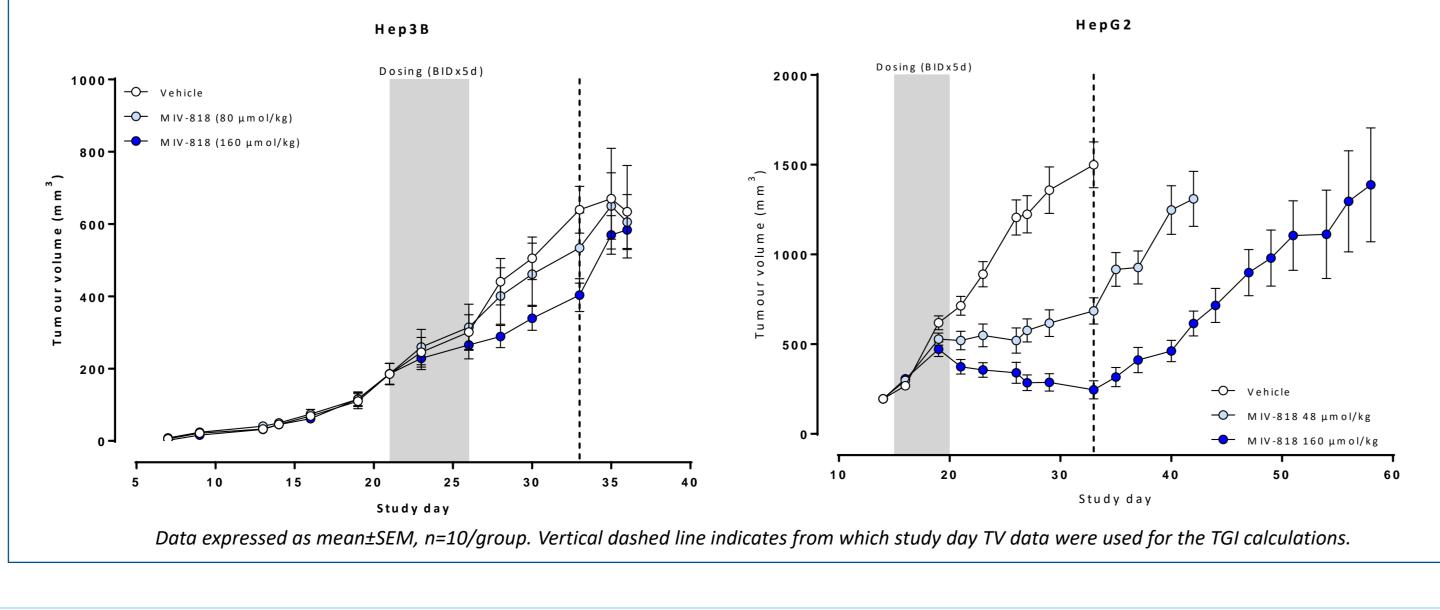
In vivo mouse xenograft models

HCC subcutaneous xenograft models were established by inoculation of Hep3B (2x10⁶) or HepG2 (1x10⁷) cells (0.1 mL in 1:1 PBS:Matrigel) subcutaneously into the left or right flank of Balb/C nude female mice. Treatment was initiated when a tumour volume (TV) of ~200 mm³ was reached. MIV-818 was dosed via oral gavage (PO) twice daily (BID) for 5 days at doses 48, 80 and 160 µmol/kg. Tumours were measured using electronic callipers and volumes were estimated using the formula 0.5 (LxW²). For histological analyses, the mice were injected intraperitoneally with a BrdU/pimonidazole (600mg/kg / 60mg/kg) mixture 2 hrs prior to being terminated and the tumour was collected for histology. Quantitative immuno-fluorescence histology on mouse xenograft tumours

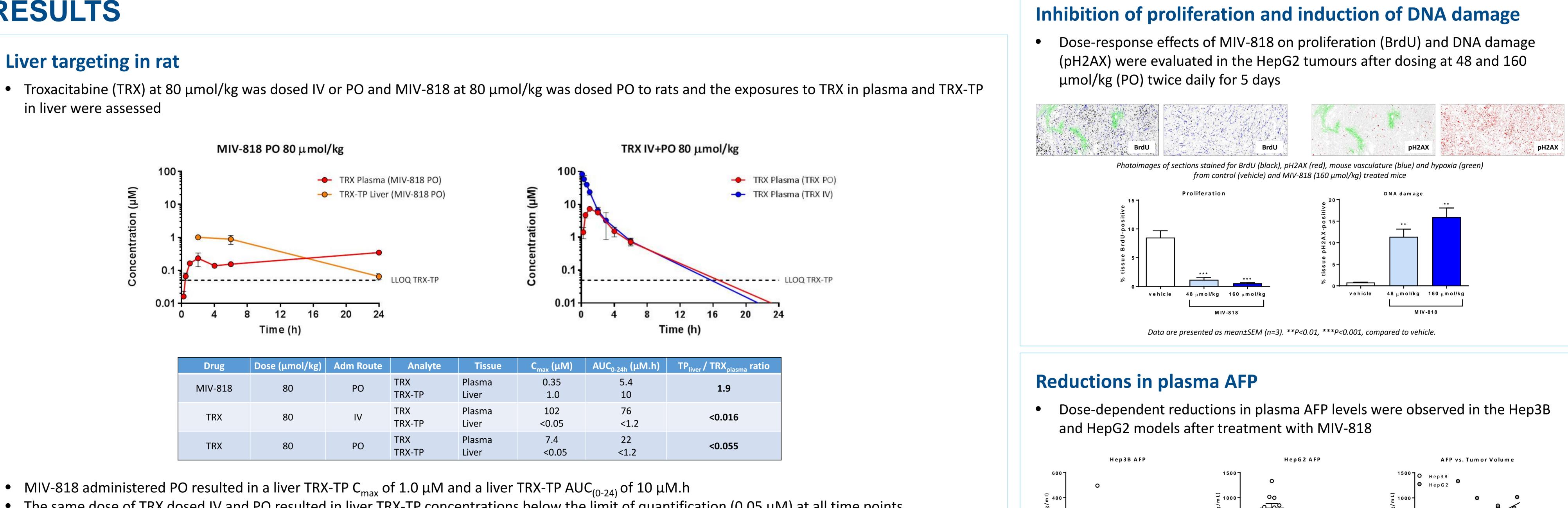
Tumour cryosections (10 μm) were immunostained for vasculature using a hamster-antimouse-PECAM/CD31, hypoxia using mouse-anti-pimonidazole-FITC (1:500), antiphospho-Histone H2A.X (Ser139) using mouse-anti-human-gH2AX, BrdU using a monoclonal rat-anti-BrdU. Cellular DNA was counter-stained with Hoechst 33342.

AFP ELISA

AFP levels were measured in plasma using the Quantikine ELISA human α -fetoprotein kit from R&D systems (catalogue number DAFP00, Lot 343004), according to the manufacturer's instructions.


Bioanalvsis

Determination of TRX in plasma and TRX-TP concentrations in tumour and liver homogenates was performed using LC-MS/MS.


Liver targeting in rat

in liver were assessed

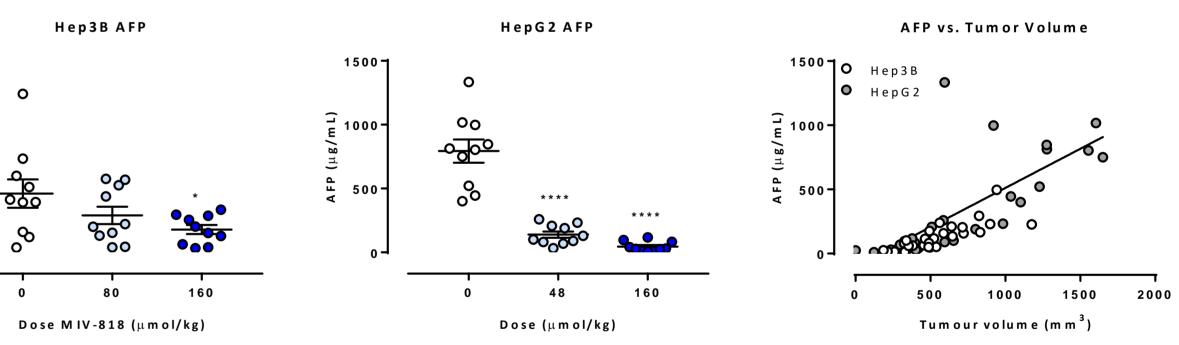
Tumour growth inhibition

RESULTS

• The same dose of TRX dosed IV and PO resulted in liver TRX-TP concentrations below the limit of quantification (0.05 μM) at all time points • The C_{max} liver TRX-TP was >20 times higher for MIV-818 after PO dosing than for TRX after IV and PO dosing • The AUC₍₀₋₂₄₎ liver TRX-TP vs. AUC₍₀₋₂₄₎ plasma TRX ratio for MIV-818 after PO dosing was >100 times higher than for TRX after IV dosing, demonstrating the substantially improved liver targeting by MIV-818 in rat, despite low stability in rat blood

 MIV-818 was given at 48, 80 or 160 μmol/kg (PO) twice daily for 5 days to mice bearing Hep3B or HepG2 tumours • Dose-dependent tumour growth inhibition (TGI) was demonstrated in both HCC xenograft models despite the expected poor delivery to the tumour due to rapid metabolism in mouse blood

• The largest effects were observed in the HepG2 model


• In these models, higher tumour TP levels are associated with greater anti-tumour effects (Albertella et al, 2017)

	Нер3В			HepG2		
Group	TGI	TGD	TP tumour Cmax (μM)	TGI	TGD	TP tumour Cmax (μM)
MIV-818 (48 μmol/kg)	-	-	-	63% (P<0.0001)	~12d	0.06
MIV-818 (80 μmol/kg)	25% (ns)	ND	0.25	-	-	-
MIV-818 (160 μmol/kg)	40% (P<0.001)	ND	0.41	96% (P<0.0001)	~23d	0.11
Troxacitabine* (117 μmol/kg)	101% (P<0.0001)	~26d	1.6	111% (P<0.0001)	>48d	0.34

TGI = (1-[Tt/T0] / [Ct/C0] / 1-[C0/Ct]) x 100; where Tt and T0 are TV of treated mouse X at day t or 0. Ct and C0 are the mean TV of the control group at day t and 0 Tumour growth delay (TGD) is calculated as T-C where T and C are times in days for mean relative TV in the treated

and control groups to reach 4x the initial relative TV P values indicate significant difference compared to control (vehicle) group; ND=Not determined *Albertella et al. 2017

Data are presented as individual plots and mean±SEM (n=10/group). *P<0.05, ****P<0.0001, compared to vehicle.

• The largest reductions were observed in the HepG2 model (by up to 94%) at the highest dose (160 μmol/kg), in line with the largest anti-tumour effects seen in this model

• The plasma AFP levels correlated strongly with the corresponding tumour volume (*r²=0.56, P<0.0001*)

CONCLUSIONS

• MIV-818 is a nucleotide prodrug of troxacitabine with improved liver targeting in rat and anti-tumour effects in mouse xenograft models of HCC, even despite the low blood stability in these species

• MIV-818 has completed the nonclinical toxicology package and is currently in preparation for the first clinical trials in patients with advanced HCC and other liver cancers

REFERENCES

Albertella et al, AACR Annual meeting 2017, Abstract 5101 http://www.medivir.se/v5/images/pdf/2017/AACR-2017-Poster-MIV-818-Albertella-final.pdf