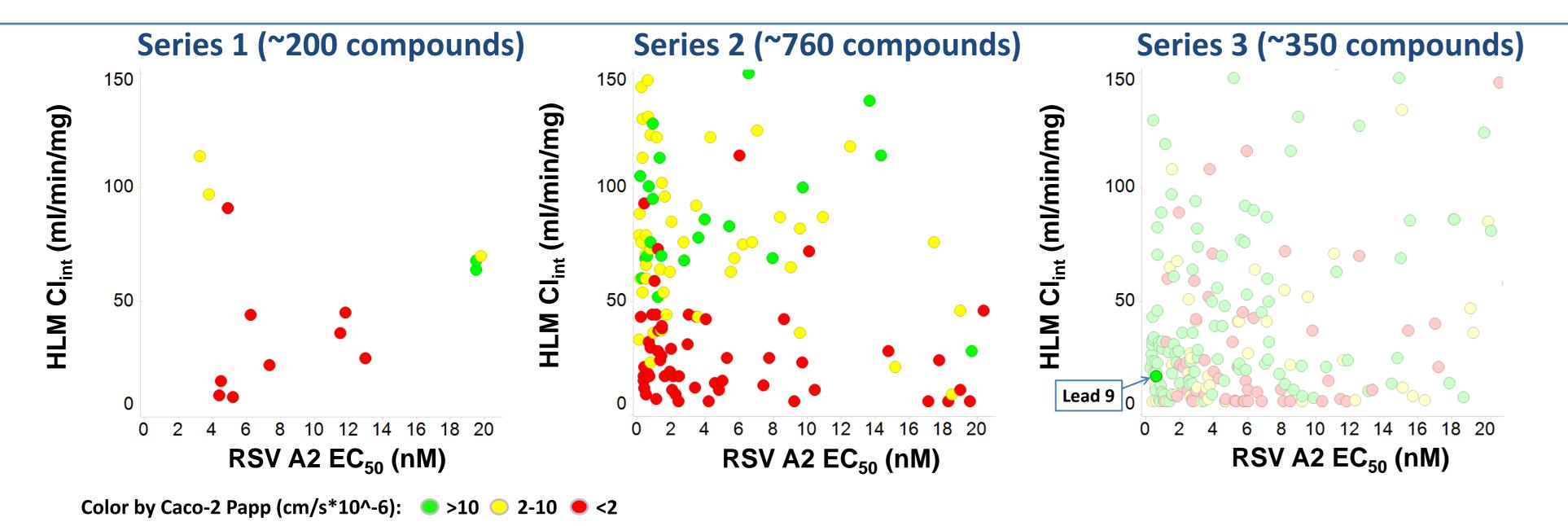


Discovery of potent small molecule inhibitors of RSV Fusion protein


Karolina Ersmark¹, Christina Rydergård¹, Helen Kylefjord¹, Erwin Brenndörfer¹, Susana Ayesa Alvarez¹, Stina Lundgren¹, Fernando Sehgelmeble¹, Horst Wähling¹, Lourdes Salvador Oden¹, Mikael Pelcman¹, Karin Leijondahl¹, Dean Derbyshire¹, Jonna Stålring¹, Neera Borkakoti¹, Michael Battles², Jason McLellan², Sara Moses¹, Tom J. Goldschmidt¹, Johan Bylund¹, Richard Bethell¹, Paul Targett-Adams^{1. 1}Medivir AB, Huddinge, Sweden 141 22. ²Geisel School of Medicine, Dartmouth College, Hanover, NH 03755-3844

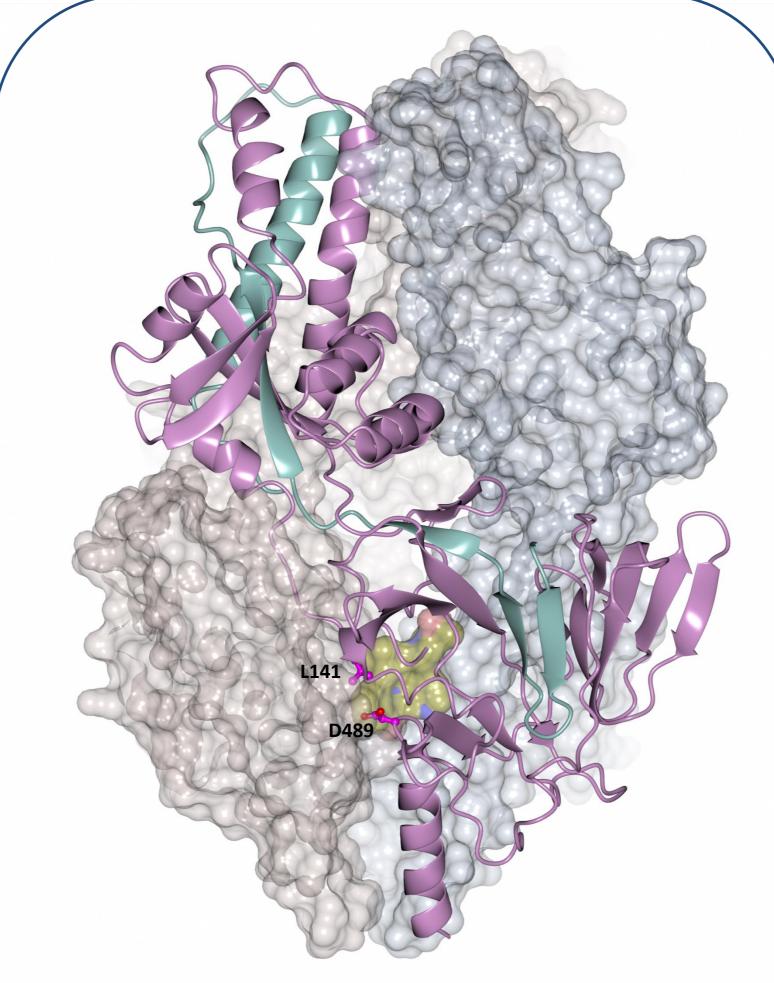
Background

Respiratory syncytial virus (RSV) infections of infant, elderly, and immunocompromised patients represent substantial unmet medical need.^{1,2} Tractable options for the development of anti-RSV therapies include inhibition of RSV-encoded fusion (F) protein.³ We report the discovery of orally bioavailable RSV F inhibitors exhibiting highly potent and balanced activities against diverse RSV isolates, large cytotoxicity indices, and promising in vivo pharmacokinetics. The profile of a frontrunning candidate from this program ('Lead 9') is presented below.

Program development

Lead optimization was instigated on three novel 6,6-bicyclic cores (series 1-3) with the aim of selecting a candidate drug capable of sustaining therapeutic drug exposures against a broad range of RSV infections in humans. Inhibitors synthesized early in the lead optimization campaign achieved potencies < 10 nM against a primary RSV A screening strain (RSV A2) but were often associated with activities against additional RSV strains and non-optimal ADME profiles. Subsequent optimizations resulted in several promising molecules from series 3 with picomolar EC_{50} values against both RSV A and B subtypes, cytotoxicity indices >50,000, favorable ADMET properties, and encouraging in vivo PK profiles in rat and dog . Lead 9 was identified as one of several special interest molecules from series 3 and was profiled extensively.

Methods


Established virology, molecular/structural biology, and drug metabolism/pharmacokinetic assays were used to screen and profile F inhibitors generated from the internal chemistry program.

Results

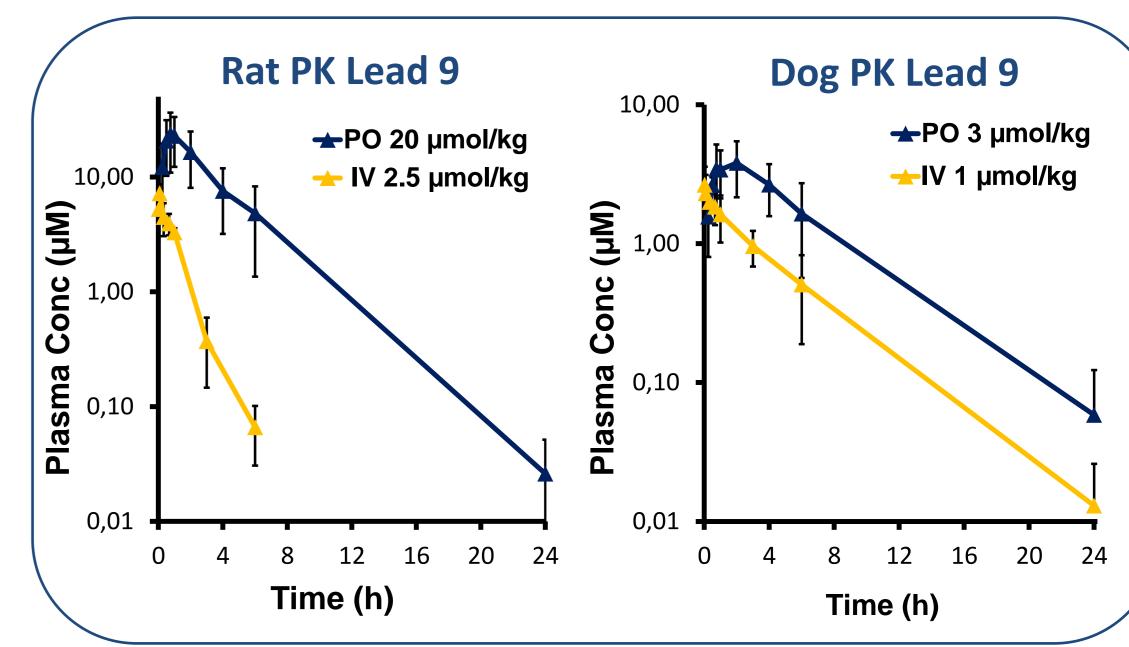
Mechanism of action for series 1-3 molecules

Time-of-addition studies and the generation of specific resistance-associated substitutions in the F protein using series 1-3 examples indicated the mechanism of action for these molecules was mediated by targeting the RSV F protein. Co-crystallization of series 1-3 examples with preF revealed compounds bound in a pocket of preF created at the interface of the 3 monomeric subunits:

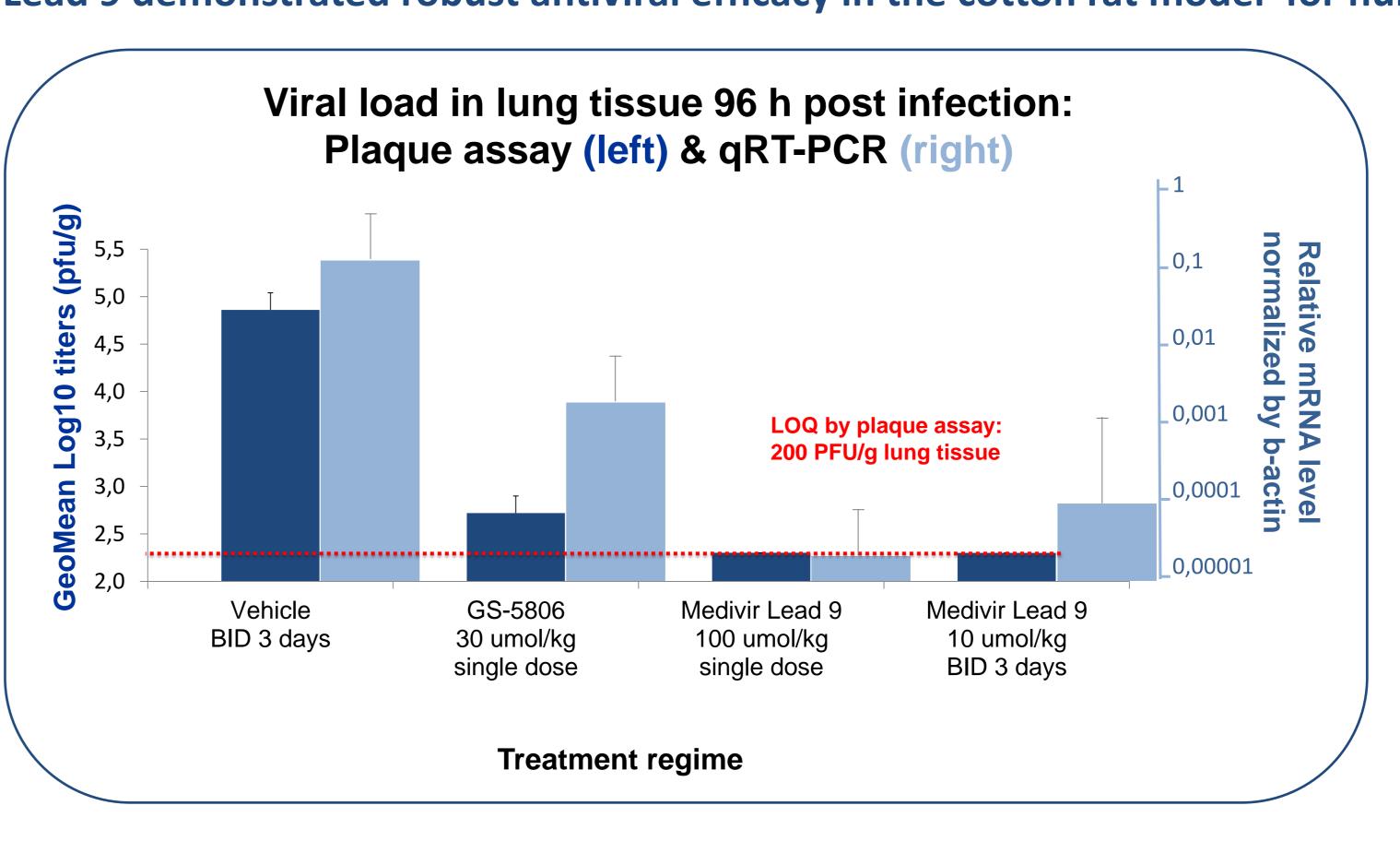
- Medivir example compounds from all 3 series bind in the same pocket with the same stoichiometry: 1 inhibitor per preF trimer
- Binding pocket contains residues involved in conferring resistance to fusion inhibitors e.g. L141 and D489.
- The inhibitors are likely 'triggering antagonists': they tether and stabilize 2 structurally labile regions of F (heptad repeat B and fusion peptide) to prevent release of the fusion peptide during the conformational change required to initiate the membrane fusion process.

Co-crystal structure of a series 1 inhibitor (yellow) bound to preF timer. L141 and D489 residues are highlighted in pink.

References


- 1. Nair H. et al Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 2010, 375, 1545-55.
- 2. Falsey A.R. et al Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 2005, 352, 1749-59.
- 3. DeVincenzo J.P. et al Oral GS-5806 activity in a respiratory syncytial virus challenge study. N. Engl. J. Med. 2014, 371, 711-22.

Broad-ranging anti-RSV activities of Lead 9 determined in Hep2C cells (5 day assay, XTT end-point)


Assay	EC ₅₀ (nM)		
	Series 1 example	Lead 9	
RSV A/A2	1	0.6	
RSV A/Long	180	0.5	
RSV A/Memphis 37	140	0.5	
RSV B/Washington	22	0.6	
RSV A clinical isolates (n=8)	ND	0.4	
RSV B clinical isolates (n=8)	ND	0.2	
Hep2C CC ₅₀ (nM)	>50 000	>50 000	

Favourable in vitro and in vivo DMPK properties of Lead 9

In vitro DMPK Lead 9			
Solubility pH 6.5 (µM) 110		10	
Caco-2 P_{app} (10 ⁻⁶ cm/s)	13		
Cl _{int} Hum Hep (μL/min/10 ⁶ cells)	1.2		
Plasma Protein Binding Hum (%)	75		
<i>In vivo</i> DMPK Lead 9	Rat	Dog	
Clearance Plasma (mL/min/kg)	4.5	1.5	
Half-life Plasma iv (h)	1.2	3.0	
Bioavailability (%)	100	92	

Lead 9 demonstrated robust antiviral efficacy in the cotton rat model for human RSV infection

cotton rats (Sigmodon hispidus, treated by gavage with Lead 9 2 h before intranasal infection by 10⁵ pfu human RSV/A/Long.

In vitro safety assessments for Lead 9 revealed benign safety profiles

In vitro salety assessments for Lead 9 revealed benign salety profiles			
Description	Result Lead 9		
Hep3B/HUH7/MT4 cell lines	$CC_{50} > 50 \mu M$		
HepG2 and rat primary hepatocytes	No significant effects on any parameter tested (top concentration 200 μ M)		
In vitro binding to GPCR, ion channels, transporters, nuclear receptors, kinases and other non-kinase enzymes.	No hits (tested at 10 μM)		
	Description Hep3B/HUH7/MT4 cell lines HepG2 and rat primary hepatocytes In vitro binding to GPCR, ion channels, transporters, nuclear receptors, kinases and other non-		

Conclusions

- A lead optimization campaign directed upon three novel 6,6-bicyclic cores (series 1-3) resulted in the identification of Lead 9, which demonstrated:
 - Biology data consistent with inhibition of RSV Fusion protein.
 - ✓ Balanced picomolar EC_{50} s against a broad range of RSV A and B isolates.
 - ✓ Favourable human in vitro DMPK properties.
 - ✓ Excellent oral bioavailability in rat and dog.
 - ✓ A robust antiviral effect in the cotton rat model for human RSV infection.
 - ✓ A benign in vitro safety profile.
- The profile of Lead 9 supports progression to preclinical development with the aim of developing a safe and effective treatment against RSV infections in humans.